Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Earth Space Chem ; 7(8): 1578-1591, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37609122

RESUMO

The physical and chemical properties of atmospheric aerosol particles depend on their sources and lifetime in the atmosphere. In coastal regions, sources may include influences from marine, continental, anthropogenic, and natural emissions. In this study, particles in ten diameter-size ranges were collected, and particle number size distributions were measured, at Skidaway Island, GA in May and June 2018. Based on air mass back trajectories and concentrations of major ions in the particles, the air mass source regions were identified as Marine Influenced, Mixed, and Continental Influenced. Organic molecules were extracted from the particles using solid-phase extraction and characterized using tensiometry and high-resolution mass spectrometry. The presence of surfactants was confirmed in the extracts through the observation of significant surface tension depressions. The organic formulas contained high hydrogen-to-carbon (H/C) and low oxygen-to-carbon (O/C) ratios, similar to surfactants and lipid-like molecules. In the Marine Influenced particles, the fraction of formulas identified as surfactant-like was negatively correlated with minimum surface tensions; as the surfactant fraction increased, the surface tension decreased. Analyses of fatty acid compounds demonstrated that organic compounds extracted from the Marine Influenced particles had the highest carbon numbers (18), compared to those of the Mixed (15) and Continental Influenced (9) particles. This suggests that the fatty acids in the Continental Influenced particles may have been more aged in the atmosphere and undergone fragmentation. This is one of the first studies to measure the chemical and physical properties of surfactants in size-resolved particles from different air mass source regions.

2.
J Phys Chem A ; 126(46): 8695-8710, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36354961

RESUMO

The cloud condensation nuclei activation of sea spray aerosol (SSA) is tightly linked to the hygroscopic properties of these particles and is defined by their physical and chemical properties. While hygroscopic sea salt in SSA strongly influences particle water uptake, the marine-derived components that make up the organic fraction of SSA constitute a complex mixture, and their effect on hygroscopic growth is unknown. To constrain the effect of organic compounds and specifically surface-active compounds that adsorb on particle interfaces, particle hygroscopic growth studies were performed on laboratory-generated model sea salt/sugar particles. For sea salt/glucose particles, ionic surfactants facilitated water uptake at low relative humidity (RH), increasing the particle growth factor (GF) by up to 7.61%, and caused a reduction in the deliquescence relative humidity (DRH), while nonionic surfactants had a minimal effect. Replacing glucose with polysaccharide laminarin in sea salt/sugar/surfactant particles caused a reduction in GF at low RHs and minimized the effect of ionic surfactants on the DRH. At RHs above the DRH, the addition of anionic or nonionic surfactants caused a decrease in GF for both sea salt/glucose and sea salt/laminarin particles. The addition of cationic surfactants, however, did not have a dampening effect on water uptake of sea salt/sugar particles and even showed a GF increase of up to 3.7% at 90% RH. An increase in the complexity of the sugar dampens the water uptake for particles containing nonionic surfactants but increases the water uptake for cationic surfactants. The cloud activation potential for 100 nm particles analyzed in this study is higher for ionic surfactants and decreases with an increase in surfactant molecular size when particle interfacial tension is considered. The surfactant effect on the hygroscopic growth and cloud activation potential of the particles containing sea salt/sugar is dependent on the surfactant ionicity and molecular size, the particle size and interfacial tension, and the interactions between inorganic salt and organic species under different RH conditions.


Assuntos
Partículas e Gotas Aerossolizadas , Tensoativos , Aerossóis/química , Água/química , Açúcares , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...